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(d) Param. RMSE
SigmaT

(e) Error Map
(Ours)

(f) Error Map
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Figure 1: Ours vs. Naïve autodiff. We compare optimization results using our offset-based gradient computation against those obtained with
naïve automatic differentiation (autodiff). Naïve autodiff fails due to biased gradients caused by parameter-dependent discontinuities in the
importance sampling framework. Consequently, (a,c) it is unable to accurately learn the basic tint of the object and often continues to (d)
update parameters in erroneous directions.

1. Details of Shape-adaptive BSSRDF

We describe more details of the shape-adaptive BSSRDF [VKJ19]
here. Given a point xo on the surface, the outgoing radiance Lo is
computed with Monte Carlo integration of samples xi generated via
importance sampling. Medium parameters and polynomial shape
descriptors θ = (θmed,θshape) are processed and fed into a VAE,
which transforms a random variable z ∼ N (0,I) into an exit posi-
tion in the canonical space.

xVAE(θ) =VAE(z | θ) (1)

Positions xVAE are then scaled by the standard deviation σn of its
neighborhood, which is a function of medium parameters.

σn(θmed) = σn(α,σt ,g) = 2(
1
4

g+
1
4

α+αe f f (α))/σt , (2)

where

αe f f (α) = 1− 1
8

log(e8 +α(1− e8)). (3)

In the calculation of shape-adaptive BSSRDF, the term Sd is imple-
mented as

Sd(ωo) = Ft(θ)/π, (4)

where Ft(θ) is the Fresnel transmission [JMLH01].

Model architecture We modified the architecture of the neural net-
works used in the forward model (e.g., the Feature, Absorption, and
Scatter Networks) to improve the rendering speed. The modifica-
tions are as follows: 1) The widths of the fully-connected layers
were halved (from 64 to 32) and 2) The depths of both the scatter-
ing and feature networks were reduced by one layer. All other train-
ing details (e.g., dataset, training loss) remain identical to those de-
scribed in the original paper [VKJ19]. We observed no significant
difference in rendering quality with the compressed model.
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2. Additional Experiments

Ours vs. Naïve autodiff. In Figure 1, we present additional results
for the comparison between naïve automatic differentiation and our
offset-bsed gradients. Our method achieves accurate inverse ren-
dering by properly handling gradients from parameter-dependent
discontinuities.

3. Experimental Setting Details

Implementation details The forward rendering algorithm (e.g.,
projection algorithm) was implemented as closely as possible to the
original paper [VKJ19]. Polynomial descriptors are fit only once
before training starts, and not updated afterwards. The step size ∆θ

in computing the σt gradient is set to 1.0.

Figure 5 in the main paper We test on two monochromatic objects
(σt = 50.0,α = 0.90) and compute image derivatives with respect
to σt . For this experiment, the step size ∆θ used for finite differ-
ences and our method is both set to 5.

Figure 8 in the main paper Initial parameter values are σt =
50.0, α = 0.9, where the scattering albedo α is fixed throughout
training. The target is σt = 100.0.

Figure 9 in the main paper Initial parameter values are σt =
50.0, α = 0.5 for all RGB channels. Target values are σt =
(20.0,50.0,50.0), α = (0.9,0.9,0.9). The optimized image results
are rendered using 512 spp for all methods. For the Path Replay
Backpropagation (PRB) [VSJ21] experiments, we experimented
with four different learning rates. The plots show the result of
the experiment with fastest convergence, where the learning rate
is 0.05.
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