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Ubiquity of Translucent Objects

Subsurface Scattering

[Vicini 2019] “A Learned Shape-Adaptive Subsurface Scattering Model.”
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Inverse Rendering of Translucent Objects

Forward 

Rendering

Inverse 

Rendering

Geometry

Lighting Camera

𝜎𝑡, 𝛼

Materials

https://www.littlefatdumpling.com/

Rendered Image

Need a Differentiable Rendering Algorithm!

https://www.littlefatdumpling.com/


Volumetric Path Tracing BSSRDF Methods
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Related Work

Inverse Rendering of Translucent Objects

Expensive

Physical Accuracy

𝜕

𝜕𝑡
𝐿𝑜 𝑝, 𝜔 = −𝜎𝑡 𝑝, 𝜔 𝐿𝑖 𝑝, −𝜔 + 𝜎𝑡 𝑝, 𝜔 𝐿𝑠(𝑝, 𝜔) 𝐿𝑜 𝑝, 𝜔 = න

𝐴

න
Ω

𝐿𝑖 𝑝, 𝜔′  𝑆 𝑝, 𝑝′, 𝜔, 𝜔′ cos 𝜃  𝑑𝜔′𝑑𝑝′

Radiative Transfer Equation (RTE) Rendering Equation

Less Realistic

Efficient
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[Vicini 2019] “A Learned Shape-Adaptive Subsurface Scattering Model.”

Beam Dipole Shape-adaptiveShape Descriptors Learned Exit Position Distribution

Efficient & More Accurate!

Related Work

Shape-adaptive BSSRDF
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Our Contribution

Differentiable Shape-adaptive BSSRDF!

→ Reconstruction of Optical Parameters with Differentiable Shape-adaptive BSSRDF

Accuracy of 

Volumetric Path Tracing

Efficiency of

BSSRDF Methods



Preliminaries
The Shape-adaptive BSSRDF



BSSRDF
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→Bidirectional Scattering Surface Reflectance Distribution Function

→ Returns ratio of reflected radiance (𝑥𝑜, 𝜔𝑜) to incident irradiance (𝑥𝑖, 𝜔𝑖)

→ Ex. Dipole Model [Jensen 2001]

𝒙𝒊𝒙𝒐

𝑆 𝑥𝑖, 𝜔𝑖, 𝑥𝑜, 𝜔𝑜 = S𝜔 𝜔𝑖  𝑺𝒑 𝑥𝑖, 𝑥𝑜  𝑆𝜔 𝜔𝑜

→Not physically accurate due to assumptions

→𝑺𝒑 is a radial function 𝑺𝒑 𝒙𝒊 − 𝒙𝒐

→The local geometry is planar
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Shape-adaptive BSSRDF

Keypoint #1. Shape-Adaptivity

𝑆 𝑥𝑖, 𝜔𝑖, 𝑥𝑜, 𝜔𝑜 = 𝑺𝒑 𝑥𝑖, 𝑥𝑜, 𝜔𝑖;  𝜃𝑚𝑒𝑑, 𝜽𝒔𝒉𝒂𝒑𝒆  𝑆𝜔 𝜔𝑜

𝑆 𝑥𝑖, 𝜔𝑖, 𝑥𝑜, 𝜔𝑜 = S𝜔 𝜔𝑖  𝑺𝒑 𝑥𝑖 − 𝑥𝑜  ; 𝜃𝑚𝑒𝑑  𝑆𝜔 𝜔𝑜

𝜽𝒔𝒉𝒂𝒑𝒆Shape-adaptive BSSRDF

Classical BSSRDF (Planar)



Keypoint #2. Importance Sampling Framework
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Shape-adaptive BSSRDF

Exit Positions

𝑥𝑖

→NO analytic BSSRDF or Sampling PDF!

𝜃𝑠ℎ𝑎𝑝𝑒

𝜃𝑚𝑒𝑑

Latent 

Variables

𝑢 ~ 𝑁 0,1
Shape-adaptive 

BSSRDF

𝑥𝑜

𝑥𝑜



Method
Differentiable Shape-adaptive BSSRDF



Problem Overview
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Extinction Coefficient 𝜎𝑡

Scattering Albedo 𝛼

Optimizing Parameters

Given Parameters
Differentiable Rendering with 

Shape-adaptive BSSRDF

ReferenceRendered 
Image



Challenges
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Differentiable Rendering with 

Shape-adaptive BSSRDF

Solution : Just use Automatic Differentiation?

No explicit BSSRDF !

Cannot Invert Sampling Transform
Why?
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Challenge #1

Implicitly Defined BSSRDF

Pixel 
Intensity

𝑥𝑜
෍

𝑘

𝐿𝑖 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡

𝑥𝑖,1

𝑥𝑖,3

𝑥𝑖,2

𝑤𝑒𝑖𝑔ℎ𝑡 ∝
𝑆𝑝 𝑥𝑜, 𝑥𝑖, 𝜔𝑜

𝑝𝑑𝑓 𝑥𝑖; 𝑥𝑜
= 𝑤

𝑤 𝑥𝑖,1 = 𝑤(𝑥𝑖,2) = 𝑤(𝑥𝑖,3)

𝐿𝑜 𝑥𝑜, 𝜔𝑜 =  ෍

𝑘

𝐿𝑖 𝑥𝑖,𝑘, 𝜔𝑖,𝑘  𝑤𝑒𝑖𝑔ℎ𝑡(𝑥𝑖,𝑘)

“Uniform Weights”

→ Weights determine contribution of each sample to pixel intensity
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Challenge #1

Implicitly Defined BSSRDF

Primal Rendering Differential Rendering

𝑑 𝑤𝑒𝑖𝑔ℎ𝑡( )

𝑑𝜃
 ∝  

𝑆𝑝
′ ⋅ 𝑝𝑑𝑓 − 𝑆𝑝 ⋅ 𝑝𝑑𝑓′

𝑝𝑑𝑓2
𝑤𝑒𝑖𝑔ℎ𝑡  ∝  

𝑆𝑝 𝑥𝑜, 𝑥𝑖, 𝜔𝑜; 𝜃

𝑝𝑑𝑓 𝑥𝑖; 𝑥𝑜, 𝜃

Cannot compute derivatives 
without 𝑺𝒑 and 𝒑𝒅𝒇 !

Do not need 𝑺𝒑 or 𝒑 !
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Challenge #1

Implicitly Defined BSSRDF

Shape-adaptive 

BSSRDF

→ Use same weights as in Primal Phase for Differential Phase

𝑤𝑒𝑖𝑔ℎ𝑡 ∝
𝑆𝑝 𝑥𝑜, 𝑥𝑖, 𝜔𝑜

𝑝𝑑𝑓 𝑥𝑖; 𝑥𝑜

→ ...BIASED! Does NOT account for how medium affects distribution of samples

𝜎𝑡

▼ ▲



𝒙𝒐 
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Problem

Parameter-dependent Visibility Discontinuities (𝜎𝑡)

→ Visibility discontinuities MOVE when importance sampling w.r.t. optimizing parameters

𝜎𝑡▲ pixel(xo) ▲

FD Reference Occluded samples become visible

𝜎𝑡▲ 

𝒙𝒐 𝒙𝒐 



𝒙𝒐 

𝜎𝑡▲ 
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Problem

Parameter-dependent Visibility Discontinuities (𝜎𝑡)

→ Visibility discontinuities MOVE when importance sampling w.r.t. optimizing parameters

Visibility 

Discontinuity 
Boundary

FD Reference

𝒙𝒐 𝒙𝒐 𝒙𝒐 
Sample Domain
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Problem

Parameter-dependent Visibility Discontinuities (𝜎𝑡)

(a) Primal Rendering (b) FD Reference (c) Naïve Autograd

Biased Gradients without handling moving visibility discontinuities!



Previous Methods

Differentiating Moving Discontinuities
► Reynolds Transport Theorem
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Interior Term

𝜕

𝜕𝜋
න

Ω

𝑓(𝑝) 𝑑𝜇(𝑝) = න
Ω

𝜕𝑓(𝑝)

𝜕𝜋
 𝑑𝜇(𝑝) + න

𝜕Ω

 Δ 𝑓 𝑝 𝑣𝐵𝑑𝜇′(𝑝)

Boundary Term

Boundary-based

Edge 

Sampling

[Li 2018]

Area-based

Divergence 

Theorem

[Bangaru 2020]



→Boundary derivative methods rely on invertibility of sampling transform

→Non-invertible layers in sampling network (e.g. ReLU) !
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Challenge #2

Non-Invertibility of Sampling Transform

Sampling with 

Shape-adaptive BSSRDF

???

Spatial 

Domain
Sample 

Domain

→ We need to implicitly handle boundary effects without inversion



Our Solution

Derivatives using Offset Samples (𝜎𝑡)

► Offset Samples: samples obtained by slightly perturbing medium 
parameters of the primal sample
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𝑥𝑜 𝑥𝑖

𝑥𝑖
−

𝑥𝑖
+

𝜕𝜃𝐿𝑜 ≈ ෍

𝑥𝑖

𝑤𝑒𝑖𝑔ℎ𝑡  𝒙𝒊
+ − 𝑤𝑒𝑖𝑔ℎ𝑡( 𝒙𝒊

−)

2Δ𝜃

Finite Differences in Sample Domain

𝑥𝑖 = 𝑇 𝑢𝑖; 𝜃
𝑥𝑖

+ = 𝑇 𝑢𝑖; 𝜃+

𝑥𝑖
− = 𝑇 𝑢𝑖; 𝜃−



𝑥𝑜 𝑥𝑖
𝑥𝑖

+
𝑥𝑜 𝑥𝑖

𝑥𝑖
−
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Our Solution

Comparison To Finite Differences

𝜕𝜃𝐿𝑜 ≈
1

2Δ𝜃
( ෍

𝑥

𝑁

𝑤𝑒𝑖𝑔ℎ𝑡 𝒙𝒊
+ − ෍

𝑥

𝑁

𝑤𝑒𝑖𝑔ℎ𝑡 𝒙𝒊
− )

Finite Differences

𝑁 𝑝𝑎𝑡ℎ𝑠 + 𝑁 𝑝𝑎𝑡ℎ𝑠 = 𝟐𝑵 𝒑𝒂𝒕𝒉𝒔

No correlation of paths!

Independent sampling for 

positive / negative paths

High-variance gradients
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Our Solution

Comparison To Finite Differences

Ours

Maximized Efficiency

Shared components for

positive / negative paths

Low-variance gradients
𝑥𝑜 𝑥𝑖

𝑥𝑖
−

𝑥𝑖
+

𝑵 𝒑𝒂𝒕𝒉𝒔

𝜕𝜃𝐿𝑜 ≈ ෍

𝑥𝑖

𝑤𝑒𝑖𝑔ℎ𝑡  𝒙𝒊
+ − 𝑤𝑒𝑖𝑔ℎ𝑡( 𝒙𝒊

−)

2Δ𝜃

Single Network Evaluation 

for Both Samples

𝜽+

𝜽−



Summary
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→ Challenges in Differentiation due to Importance Sampling
→ Implicitly defined BSSRDFs hinder weight differentiation

→ Non-invertibility of sampling transform hinder addressing discontinuity issues

→ Solution: Offset Sample-based Finite Differences
→ Efficient reuse of paths compared to Naïve FD

→ Inherent handling of boundary effects without sampling

→ Absorption Probability as Differentiable Scaling Factor (𝛼)
→ Details in Main Paper!



Results
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Validation

Comparison with Finite Differences (𝜎𝑡)
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“Planar” : [Deng 2022] “Reconstructing Translucent Objects Using Differentiable Rendering”
“Naïve” : Ours w/o offset sampling

Comparison with BSSRDF Methods

Differentiable Rendering with Planar BSSRDF



29

Comparison with Volumetric Methods

Path Replay Backpropagation (PRB)

[Vicini 2021] “Path Replay Backpropagation: Differentiating Light Paths Using Constant Memory and Linear Time.”
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Comparison with Volumetric Methods

PSDR-VOL

[Zhang 2021] “Path-Space Differentiable Rendering of Participating Media.”
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Comparison with Volumetric Methods

Time Efficiency

Ours

(32 spp)

Ours 

(64 spp)

PRB

(32 spp)

PSDR-VOL

(32 spp)

1.40 2.80 2.28 4.07

[Table 1] Average time per iteration (sec.) of different approaches



Conclusion



Summary

► Differentiable rendering based on finite differences in sample domain
• Effective due to inherent capturing of boundary integral effects.

• Efficient due to utilizing correlation of sampled paths

► Comparison
• Better sampling efficiency & time-efficiency compared to volumetric methods 

• Better accuracy compared to planar BSSRDF model

33



Limitations & Future Work

► Suitable for low-dimensional parameters

► Extending to heterogeneous medium
• Can be approximated with textured spatial variation

► Extending to other sampling network architectures
• Invertible sampling networks

• Models with an explicit pdf for weight differentiation

34



Thank You for Listening!
Email me at jeson@postech.ac.kr
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Appendix



A. Shape-adaptive BSSRDF Architecture

39
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B. Sampling Transform

𝑥𝑖
+ = Π(𝑥𝑜 + 𝜎𝑛 𝜃+ ⋅  𝑥𝑉𝐴𝐸 𝑢 )

Importance Sampling Transform

Canonical 
Sample

𝑢~𝑁 0,1

Feed to VAE 
𝒙𝑽𝑨𝑬 𝒖 

Scale by 
neighborhood size

𝝈𝒏 𝜽

Project to 
surface

𝚷

Final exit 
position

xi



C. Derivative of Scattering Albedo 𝛼
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Scattering Albedo

𝛼
…

Shape Features
𝜃𝑠ℎ𝑎𝑝𝑒

Absorp.

Probability

𝑆𝑎𝑏𝑠
Absorption

Network

𝑤𝑒𝑖𝑔ℎ𝑡 𝑥𝑖 ∝
𝑆𝑝 𝑥𝑜, 𝑥𝑖, 𝜔𝑜

𝑝 𝑥𝑖; 𝑥𝑜

            ∝ 𝑺𝒂𝒃𝒔

→ Can use standard Auto-diff

Primal Rendering Differentiable Scaling Factor
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“Planar” : [Deng 2022] “Reconstructing Translucent Objects Using Differentiable Rendering”
“Naïve” : Ours w/o offset sampling

D. More Comparisons with Planar BSSRDF
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