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Figure 1: Inverse rendering with shape-adaptive importance sampling. (a-c) We jointly optimize scattering parameters σt and α of a homo-
geneous translucent object using the shape-BSSRDF model [VKJ19]. We address the challenges in differentiability posed by the importance
sampling framework by approximating gradients using offset samples. (d, e) Our method computes highly accurate gradients with low
variance.

Abstract

Subsurface scattering is ubiquitous in organic materials and has been widely researched in computer graphics. Inverse ren-
dering of subsurface scattering, however, is often constrained by the planar geometry assumption of traditional analytic Bidi-
rectional Surface Scattering Reflectance Distribution Functions (BSSRDF). To address this issue, a shape-adaptive BSSRDF
model has been proposed to render translucent objects on curved geometry with high accuracy. In this paper, we leverage this
model to estimate parameters of subsurface scattering for inverse rendering. We compute the finite difference of the rendering
equation for subsurface scattering and iteratively update material parameters. We demonstrate the performance of our shape-
adaptive inverse rendering model by analyzing the estimation accuracy and comparing to inverse rendering with plane-based
BSSRDF models and volumetric methods.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Inverse rendering of 3D objects has been studied intensively for
decades to bridge the gap between the real and digital worlds.
Beyond 3D reconstruction, accurate material estimation facilitates
seamless transmission of real objects to virtual scenes and vice
versa via 3D printing. Most inverse rendering works [ZSD∗21,
ZLLS22, JLX∗23] focus on reconstruction of objects with basic
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materials, such as those exhibiting diffuse or specular surface re-
flection. Relatively few studies address material estimation for ob-
jects with subsurface scattering phenomena, which are prevalent in
the appearance of everyday objects, such as human skin and fruits.

Subsurface scattering is a physical event of light transport where
light penetrates the surface, scatters inside the translucent ma-
terial, and exits at the adjacent surface point. To compute the
contribution of subsurface scattering numerically, volumetric path
tracing methods simulate the light transport of photons stochasti-
cally [GZB∗13, ZYZ21, CLZ∗20]. However, such brute-force sim-
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ulation requires a large number of path-tracing samples for the ren-
dering to converge.

In contrast, analytic subsurface scattering models such as BSS-
RDFs [JMLH01, DJ05, HCJ13] successfully render translucent ob-
jects using a much smaller number of path-tracing samples by esti-
mating the contribution of adjacent surface points based on a strong
geometric assumption that the surface is planar and has infinitely
thick volume below. Still, the BSSRDF suffers from compromises
in the rendering accuracy caused by assuming planar geometry and
ignoring the shape of the local neighborhood.

To address this issue, Vicini et al. [VKJ19] proposed a shape-
adaptive subsurface scattering method, where a sampling network
learns how to sample adjacent surface points according to the shape
of local neighborhood and medium parameters, resulting in ac-
curate rendering. However, adopting the shape-adaptive BSSRDF
model to inverse rendering is not straightforward.

In this work, we analyze and solve the difficulties of differential
rendering with the shape-adaptive BSSRDF model to build a dif-
ferentiable shape-adaptive BSSRDF framework. First, the Monte
Carlo importance sampling required for rendering with the shape-
adaptive BSSRDF is affected by the medium parameters, but the
derivative of this sampling operation with respect to the medium
parameter is difficult to compute. To resolve this problem, we pro-
pose an offset sample-based gradient estimation. Second, while the
absorption by the medium affects the image, the stochastic behavior
of absorption makes the differentiation non-trivial. We handle this
problem by utilizing simple reparameterization to obtain gradients
stably with standard automatic differentiation (Fig. 1).

Compared to the previous approach using BSSRDFs, our method
using the differentiable shape-adaptive BSSRDF estimates mate-
rial parameters for translucent objects more accurately by remov-
ing unrealistic planar geometric assumptions, while retaining sta-
ble optimization with a small number of samples per pixel (spp).
We demonstrate our numerical accuracy and stable convergence via
thorough experiments with synthetic data.

2. Related Work

2.1. Rendering of Translucent Objects

A prominent method for achieving photorealistic rendering is
Monte Carlo path tracing [KVH84, Rus88], which simulates ex-
plicit light paths resulting from scattering events. While this ap-
proach can produce highly realistic images, it is computation-
ally expensive. This challenge is exacerbated for participating me-
dia with high scattering albedos, leading to prolonged random
walks. To address this issue, several works have enhanced the
sampling efficiency of Monte Carlo rendering techniques by in-
tegrating Dwivedi sampling, which guides random walks toward
surfaces for early termination, thus reducing computational costs
[Kd14, MHD16].

Another significant approach involves the use of BSSRDFs.
BSSRDFs mathematically model how incoming light is trans-
ported across a surface by solving the Radiative Transfer Equa-
tion (RTE) at the surface boundary. Incorporating diffusion the-
ory simplifies the RTE, enabling straightforward solutions using

dipole [JMLH01], multipole [DJ05], or photon beam [HCJ13] con-
figurations.

Although diffusion-based methods are computationally efficient,
they fall short in physical accuracy compared to full light path
simulations, particularly for low-scattering materials. This limita-
tion arises because diffusion-based models typically assume a pla-
nar geometry, which does not accurately represent complex sur-
faces. Empirical solutions have been developed to better model
low-scattering materials [DLR∗09] and to integrate single and mul-
tiple scattering effects without separate modeling [Chr15].

To further improve accuracy, Vicini et al. [VKJ19] proposed
a shape-adaptive BSSRDF model for importance sampling that
accounts for surface geometry variations, enhancing the realism
for translucent objects. The shape-adaptive BSSRDF model uti-
lizes a variational autoencoder (VAE) [KW13] to model the high-
dimensional space of scattering distributions conditioned on the
shape of local neighborhoods and material information. The VAE
performs shape-adaptive importance sampling of exit positions of
lights. In our work, we design an inverse rendering framework by
building a differentiable shape-adaptive BSSRDF to infer material
parameters from images of translucent objects.

2.2. Differentiable Rendering

Differentiable rendering is an extensively studied topic in the
graphics and vision community for estimating scene parameters
from images, such as object shape, lighting, texture, and material
parameters. Most rasterizer-based differentiable renderers [LB14,
KUH18, GCM∗18, LLCL19] are interested in handling simplified
lighting models, such as the Phong model [Pho75], that do not con-
sider the effect of subsurface scattering. Recent neural renderering
works [ZSD∗21, ZLLS22, JLX∗23] showcase joint reconstructions
of geometry and physically-based material parameters, but these
works also assume the objects do not exhibit subsurface scattering.
Recent differentiable renderers focusing on realistic appearance are
based on Monte Carlo path tracing [TSG19, LADL18, NDVZJ19]
to handle global lighting or adopt more realistic materials such as
microfacet models [WMLT07]. Still, many path-tracing differen-
tiable renderers are designed for opaque objects. Our work builds
an accurate differentiable renderer for translucent objects based on
Monte Carlo path tracing.

One of the key challenges in differentiable rendering is ob-
taining meaningful gradients from non-differentiable discontinu-
ities so that the scene parameters are updated according to the
position of discontinuities, e.g., deforming object shape to fit ob-
ject silhouette. Zhang et al. [ZWZ∗19] identified three types of
edges responsible for such parameter-dependent discontinuities:
boundary, silhouette, and sharp edges, which are inevitable when
optimizing the scene geometry. Parameter-dependent discontinu-
ities have been handled via additional sampling at the discontinu-
ity [LADL18, ZMY∗20, ZYZ21], reparameterization of rendering
integrals [LHJ19, BLD20, XBLZ23], and importance sampling of
boundary light paths [YLB∗22]. Our work also addresses similar
parameter-dependent discontinuities; a material parameter for sub-
surface scattering affects the sampling distribution for Monte Carlo
path tracing. Depending on the material parameter, some samples
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can be occluded by object surface, creating discontinuity. Handling
this parameter-dependent discontinuity enhances stability and ac-
curacy of the parameter estimation in scenes with complex geome-
tries. In our work, we demonstrate that we can simply use forward
differences to effectively handle this issue.

2.3. Inverse Rendering of Translucent Materials

Accurate rendering of translucent objects can be achieved via
Monte Carlo volumetric path tracing. Thus, a natural approach for
inverse rendering of translucent objects is to utilize differentiable
renderers based on volumetric path tracing [GZB∗13,CLZ∗20,ND-
SRJ20,ZYZ21,VSJ21]. However, explicit simulation of light paths
within the internal volume is more computationally expensive than
standard path tracing using only surface samples. Volumetric path
tracing requires a higher number of samples to achieve conver-
gence.

Several alternatives to volumetric path tracing for inverse ren-
dering of translucent materials have been proposed. One approach
involves learning relightable neural scene representations by ap-
proximating single and multiple scattering effects [ZSS21] or using
Microflake theory [JAM∗10, HDCD15]. Another approach uses
BSSRDFs for various applications, such as estimating medium pa-
rameters from a single image [MES∗11] or handling heterogeneous
media [ZIK∗17].

Recently, Deng et al. [DLW∗22] demonstrated that the gener-
alized differential path tracing framework [ZMY∗20] can be ex-
tended to support BSSRDF models by incorporating the simple
dipole BSSRDF model [JMLH01]. This approach circumvents vol-
umetric path tracing by using BSSRDFs, but makes unrealistic geo-
metric assumptions of planar geometry, thereby compromising the
accuracy of material parameter estimation. In contrast, our work
employs a shape-adaptive BSSRDF, which does not impose the pla-
nar geometry assumption and yields a more accurate simulation of
subsurface scattering without the need for volumetric path tracing.

3. Preliminary

3.1. Inverse Rendering for Translucent Objects

The physical processes that contribute to the translucent appear-
ance of an object are absorption and scattering. They determine the
distribution of paths that light travels in and affect the appearance
of an translucent object. The medium parameters that affect ab-
sorption and scattering are the extinction coefficient σt , scattering
albedo α, and anisotropy parameter g [NGHJ18]. Assuming point
lighting, the rendering equation using BSSRDF is given as:

Lo(xo,ωo) =
∫

A
S(xo,xi,ωi,ωo) Li(xi,ωi) |n ·ωi| dxi, (1)

where Lo is the outgoing radiance at surface point xo in the direc-
tion ωo, S is the BSSRDF, Li is the incident radiance at xi along
direction ωi, and n is the surface normal at xi. For a point light
source, Li(xi,ωi) = V(xi,ωi) I/r2, where V is the visibility term,
I is the radiant intensity, and r is the distance between xi and the
light source. With the shape-adaptive importance sampling frame-
work, both the BSSRDF S and the sampling of xi are affected by
scattering parameters.

The estimation of the medium parameters can be achieved via
inverse rendering that consists of two stages: 1) a primal render-
ing phase that produces the image from parameters, 2) a differ-
ential rendering phase that computes the gradients with respect to
parameters. The computed gradients are used to minimize the er-
ror between primal renderings and target images using an iterative
optimization method such as gradient descent.

In this work, we reconstruct two scalar-valued medium param-
eters σt ∈ R and α ∈ R from target images. We make a few as-
sumptions in the problem formulation for simplicity. We assume
a homogeneous material, and the anisotripy parameter g = 0. The
geometry and lighting are given in advance. We ignore the effect
of indirect illumination and assume light paths x̄ are ordered se-
quences of points in the form x̄ = (xlight ,xi,xo,xcam), where xlight
and xcam are the positions of the point light and camera, respec-
tively.

3.2. Shape-adaptive BSSRDF

The key idea of shape-adaptive BSSRDF [VKJ19] is to adapt the
BSSRDF S to the medium and shape of the local neighborhood:

S(xo,xi,ωi,ωo) = Sp(xo,xi,ωi;θmed,θshape)Sd(ωo), (2)

where Sp represents a learnable term conditioned on medium pa-
rameters θmed = (α,σt ,g) and local polynomial shape descriptors
θshape, and Sd is an analytically implemented term for addressing
the effect of Fresnel transmission. Compared to using a fixed BSS-
RDF for all points on the surface, this shape-adaptive formulation
provides accurate rendering of translucent materials by removing
the unrealistic assumption of a planar surface.

Instead of directly implementing the learnable function Sp,
Vicini et al. [VKJ19] trained a sampling network, which is imple-
mented as a VAE, to sample positions from a distribution propor-
tional to Sp. Sample points xi are generated by first sampling 3D
positions xVAE near the point xo, and projecting the sampled points
onto the surface using a projection operation Π:

xi(θmed,θshape) = Π(xo + σn(θmed) xVAE(θmed,θshape)), (3)

where σn(θmed) is the standard deviation determined by the
medium parameters θmed.

Since the sampling density of xi is proportional to Sp, the Monte
Carlo integration in rendering cancels the Sp term and the proba-
bility density function p(xi):

∑
xi

Li(xi,ωi)Sp(xo,xi,ωi;θmed,θshape)Sd(ωo)V(xi,ωi)

p(xi)
(4)

=∑
xi

Li(xi,ωi) Sabs Sd(ωo) V(xi,ωi), (5)

where Sabs is a scaling factor determined by a separate absorp-
tion network Absorb(xo;θmed,θshape), which we elaborate in Sec-
tion 4.3. For more details of shape-adaptive BSSRDF, such as the
formulation of σn, refer to the supplementary document.

4. Differentiable Shape-adaptive BSSRDF

For any scene parameter θ (e.g., medium parameters), the image
derivative with respect to the parameter θ can be computed via the
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differential rendering equation:

∂θLo(xo,ωo) = ∂θ

∫
f (xi;θ)dxi, (6)

where f (xi) = S(xo,xi,ωi,ωo) Li(xi,ωi) |n ·ωi| is the integrand of
Eq. (1). In the following, we analyze the challenges in differen-
tial rendering and design our solutions for building a differentiable
shape-adaptive BSSRDF.

4.1. Challenges in Differentiation of Importance Sampling

The shape-adaptive BSSRDF samples exiting positions xi from a
density proportional to Sp. Since the sampled points xi are influ-
enced by the medium parameters via σn (Eq. (3)), differentiation of
the importance sampling iprocess is required. However, calculating
the derivatives for the importance-sampled positions is not trivial.

We consider the implementation of importance sampling where
samples in a canonical domain u ∈ U , generated from an easily
sampled distribution, are transformed into samples in the target do-
main xi ∈ X with a desired probability density p(x). The transfor-
mation is expressed as

xi = T(u,θ). (7)

Here, we assume that the importance sampling function T is injec-
tive and differentiable for the purposes of theoretical analysis. We
can reformulate the primal rendering equation as

Lo(xo,ωo) =
∫
U

f (T(u,θ);θ)|J(u)|du, (8)

where |J(u)| is the determinant of the Jacobian of T. As a result,
the differential rendering equation (Eq. (6)) can be written as

∂θLo(xo,ωo) = ∂θ

∫
U

f (T(u,θ);θ)|J(u)|du. (9)

When T is a function of θ, the boundary ∂U of the canonical
domain U may move. For example, a sample xi originally visible
for some θ may end up in an occluded region for a different value
of θ. In this case, the boundary ∂U moves to exclude the point u
corresponding to xi out of the visible region. The accurate compu-
tation of gradients in the presence of such moving discontinuities
has been addressed through the introduction of a boundary term.

Reynolds transport theorem [ZMY∗20, ZYZ21] addresses the
parameter-dependent discontinuities by separately handling the
boundary integral:

∂θLo(xo,ωo) =
∫
U

∂θ

[
f (T(u,θ);θ)|J(u)|

]
du (10)

+
∫

∂U
∆
[

f (T(u,θ);θ)|J(u)|
]
· vdis du, (11)

where vdis is the velocity of the discontinuity boundary ∂U and
∆ is the difference across the discontinuity boundary. Eqs. (10) and
(11) are referred to as the interior and boundary terms, respectively.
Below, we analyze the challenges in the calculation of each term for
our case of shape-adaptive BSSRDF.

Interior term Previous differentiable rendering works have ob-
served significant challenges when importance sampling is in-
volved. We apply the analysis of Zeltner et al. [ZSGJ21] and refer
interested readers to their work for details.

(a) FD Reference (b) 𝜎! = 𝜃 (c) 𝜎! = 𝜃 + Δ𝜃

𝑥!
𝑥" (𝑣𝑖𝑠 = 0)
𝑥" (𝑣𝑖𝑠 = 1)

Figure 2: Illustration of parameter-dependent discontinuities. (a)
We consider a point xo on the lower lateral surface of the cone,
where the pixel intensity increases with increasing σt . (b, c) As σt
increases, samples xi move closer to xo. This shift causes an ini-
tially invisible sample (in dark blue) nearest to the discontinuity
boundary xB to become visible, thereby increasing the pixel value
at xo. This phenomenon is a form of moving discontinuities in the
sample domain (inset with black edges).

(a) Primal Rendering (c) Auto. Diff. Gradients(b) FD Reference

Figure 3: Biased gradients due to the absence of the boundary
term. We compare image derivatives with respect to σt computed by
naïve automatic differentiation against those obtained by finite dif-
ferences. (c) Naïve autodiff gradients fail to account for parameter-
dependent discontinuities, resulting in biased gradients that differ
significantly from (b) the finite difference reference.

Zeltner et al. [ZSGJ21] argue that the transformation T can in-
troduce significant variance to the interior term. This holds true
even when the sampling density is perfectly proportional to the in-
tegrand. We assume the target domain is parameterized by a unit
hypercube U = [0,1]n as in the original paper. With perfectly pro-
portional importance sampling, we can formulate the interior term
as: ∫

U
∂θ f (T(u,θ);θ)|J(u)|du =

∫
U

∂θ

[
f (T(u,θ);θ)

p(T(u,θ);θ)

]
du (12)

=
∫
U

∂θ

[
g(T(u,θ);θ)

]
du (13)

=
∫
U

[
∂xg(u;θ) ∂θ T(u,θ)+∂θg(u;θ)

]
du, (14)

where the determinant of the Jacobian |J(u)| = 1/p(xi;θ) and the
integrand f is written as a product of the sampling distribution p
and the remaining terms g: f = p ·g.

This analysis is relevant to our case, as we assume the sam-
pling distribution is perfectly proportional to the integrand. Zeltner
et al. [ZSGJ21] observed that the derivative ∂θ T(u,θ) of the trans-
formation T in the first term of Eq. (14) can be highly sensitive
to small changes in θ, which can lead to high-variance estimates.
Our implementation of T involves the projection operation Π (Eq.
(3)), which makes the shape-adaptive BSSRDF sensitive to this is-
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sue. Projection can introduce distortion by mapping originally close
points to distant surface points, e.g., at corners and micro-detailed
surfaces.

Boundary term We note that the boundary term is needed in our
case even with static geometry, due to parameter-dependent impor-
tance sampling. Figure 2 illustrates this issue. As we do not up-
date the geometry, the spatial position of the visibility boundary
xB = T(uB;θ) does not change. The corresponding boundary uB in
the sample domain, however, changes with parameter θ. We visual-
ize the domain U , which is the latent space of the VAE in our case,
as a 2D domain for illustration purpose.

The evaluation of the boundary term requires sampling of points
in the boundary ∂U . This requires mapping the visibility bound-
ary in X back to U . However, as the VAE is not invertible due to
non-linear layers (e.g. ReLU activation), transformation T is not in-
vertible. Biased gradients due to the absence of the boundary term
are illustrated in Figure 3.

4.2. Offset Sample-based Gradient Estimation

From the above analysis, we identify two main challenges in ap-
plying the state-of-the-art differentiable rendering frameworks to
the shape-adaptive model: 1) high variance in the interior term and
2) difficulty of sampling the boundary term. Rather than separately
modeling each term, we take an orthogonal approach.

We propose to compute gradients by computing the finite dif-
ference of offset samples. A similar idea has been explored by
[KMA∗15], where image gradients are approximated by finite dif-
ferences of adjacent light paths for primal path tracing. Our offset
samples are obtained by slightly perturbing θ used to compute xi
while fixing the sample u in the canonical domain:

x+i = T(u;θ
+), x−i = T(u;θ

−), (15)

where θ
+,θ− are 1-dimensional parameters perturbed in both di-

rections.

For the extinction coefficient σt , its main contribution to the ren-
dering pipeline is determining the scale of scattering σn (Eq. (3)).
In our setting where g = 0, the extinction coefficient σt does not af-
fect xVAE, but only the scale σn. Hence, we can calculate the offset
samples efficiently without evaluating VAE twice using the same
samples xVAE for both θ

+ and θ
−:

x+i = Π(xo +σn(θ
+) xVAE), x−i = Π(xo +σn(θ

−) xVAE). (16)

Finally, the gradient with respect to the parameter θ is approxi-
mated by the sum of the differences of offset samples:

∂θLo ≈∑
xi

g(x+i )−g(x−i )

2∆θ
. (17)

4.3. Gradients of Scattering Albedo α

The scattering albedo α’s contribution to the appearance of translu-
cency is different from σt in the primal rendering pipeline. α

contributes to the absorption probability estimation using the ab-
sorption network Absorb(xo;θmed,θshape). In the primal render-
ing phase, the validity of samples is stochastically determined via

(a) Primal Rendering (c) Ours(b) FD Reference (d) Error Map

Figure 4: α gradients. Reparameterizing the estimated absorption
probability as a scale factor allows the differentiation of α using
naïve automatic differentiation.

RMSE : 0.0011

RMSE : 0.0011

(a) Primal Rendering (b) FD Reference (c) Ours (d) Abs. Diff.
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Figure 5: Comparison of image derivatives. We compare image
derivatives computed with (b) finite differences (128 spp) and (c)
our method (32 spp).

the estimated absorption probability. For example, light entering a
highly absorptive object, hence having high absorption probability,
will be less likely to exit and contribute to the pixel intensity.

In the differential rendering phase, we reparameterize the es-
timated absorption probability as a scale factor Sabs = 1 −
Absorb(xo;θmed,θshape) applied to each sample (Eq. (5)), rather
than using it as termination probability. This design choice serves
two purposes. First, α becomes differentiable as it now contributes
to the intensity (color) of each sample (Fig. 4). Second, samples are
not wasted due to termination.

In summary, while the gradient for the extinction coefficient σt is
computed with offset samples, the gradient for the scattering albedo
α is computed with automatic differentiation of a reparameterized
rendering equation.

5. Experiments

We jointly optimize the extinction coefficient σt and scattering
albedo α in our experiments, unless explicitly stated otherwise.
To evaluate the accuracy of our estimations, we measure the Root
Mean Square Error (RMSE) between the estimated parameters and
their corresponding ground truth values after 300 iterations. All
plots for σt have their values scaled by a factor of 0.01 for visu-
alization purpose. We use the Adam Optimizer [KB17].
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Figure 6: Shape-adaptive BSSRDF vs. Planar BSSRDF. We optimize the scattering albedo and extinction coefficient using the shape-adaptive
BSSRDF and a planar BSSRDF-based method [DLW∗22]. The shape-adaptive model ("Naïve") with naïve automatic differentiation fails to
converge to correct parameter values. The shape-adaptive model ("Ours") tends to preserve details better (e.g., dents in the Head scene),
whereas the planar model ("Planar") tends to generate more blurry results.

Dataset We render roughly 40 images per object using the volumet-
ric path tracer Mitusba3 [JSR∗22]. We use the volpath integrator
with max_depth set as 32, and set the BSDF as null material
to discard the effect of interreflection. The ground-truth parame-

ter values for the extinction coefficient and scattering albedo are
sampled from the range [30,100] and [0.8,0.98], respectively.

Implementation details We utilize automatic differentiation and
GPU ray-tracing provided by the differentiable rendering frame-
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work PSDR-CUDA [ZMY∗20, DLW∗22]. We trained the neural
networks of the forward model (e.g., VAE, Absorption Network)
with a slightly more lightweight architecture than that described in
the original paper [VKJ19] for computational efficiency. Details of
the modified architecture are in the supplementary. The forward
model takes as input reduced medium parameters α

′ and σ
′
t to de-

couple the effect of the anisotropy parameter g based on similarity
theory [WPW89]. In all experiments including ours and compared
methods, we set g = 0, and hence assume σt = σ

′
t ,α = α

′.

Validation In Figure 5, we compare the accuracy of gradients com-
puted with our method to gradients obtained via finite differences.
For a more precise comparison, random seeds were fixed when ob-
taining the FD result, resulting in low noise. Our gradient compu-
tation algorithm correctly approximates the FD reference without
the need for an explicit discontinuity handling.

Ours vs. Naïve automatic differentiation In Figure 6, we com-
pare our method ("Ours") with naïve automatic differentiation
("Naïve"). The parameter-dependent discontinuities inherent in the
shape-adaptive BSSRDF lead to inaccurate gradients (Figure 3), re-
sulting in training divergence. Additional experiments are included
in the supplementary material.

Shape-adaptive BSSRDF vs. Planar BSSRDF In Figure 6,
we compare our method against an inverse rendering method
[DLW∗22] using a planar BSSRDF [JMLH01]. Our experiments
demonstrate that the shape-adaptive importance sampling frame-
work yields lower parameter error compared to the planar-based
model. Qualitatively, our results exhibit sharper details. On the
other hand, the projection algorithm accompanied by the planar-
BSSRDF model tends to blur out the rendered images.

Robustness to initialization To demonstrate the robustness of our
method, we conducted experiments using eight randomly sampled
initial values for both scattering parameters, σt and α (Figure 7).
As optimization proceeds, the shaded area becomes more narrow,
indicating stable convergence regardless of initialization.

Shape-adaptive BSSRDF vs. Volumetric rendering In Figure 8,
we optimize σt using our method and PSDR-VOL [ZYZ21]. While
PSDR-VOL is capable of joint shape optimization, we disabled
components specific to handling shape discontinuities for fair com-
parison. The Head scene is monochromatic and α is fixed to 0.9.
At 32 spp, our method converges to a value close to the ground
truth after 300 iterations. Both at equal (32 spp) and increased spp
(128 spp), PSDR-VOL diverges.

In Figure 9, we jointly estimate σt and α for each RGB chan-
nel using our method and Path Replay Backpropagation (PRB)
[VSJ21] implemented in Mitsuba3 [JSR∗22]. Because the synthetic
data was rendered using the same forward rendering model em-
ployed by PRB, it has an advantage in optimization. Still, we ob-
served that our method is capable of converging earlier to a solution
close to ground-truth parameters, especially for objects character-
ized by a low σt and α.

Time efficiency In Table 1, we report the average computation time
per iteration for the Head scene in Figure 8, measured on a single
NVIDIA GeForce RTX 4090 graphics card. The max depth of both
PSDR-VOL and PRB were set to 6 during training. Our method
demonstrates better time efficiency compared to PSDR-VOL and
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Figure 7: Robustness to initialization. We conducted experiments
using eight randomly sampled initial parameter values on the
Croissant scene. The top two rows show results of three sam-
ples in the experiments. In the bottom row, individual error plots
are shown in gray lines. The blue lines represent the mean across
all experiments, while the lightly shaded area indicates ± 1 stan-
dard deviation from the mean. As optimization proceeds, the shaded
area narrows, reflecting the convergence of the experiments regard-
less of the initialization.

PRB, as BSSRDF methods do not require explicit sampling of in-
ternal paths within the volume.

Table 1: Average time per iteration (sec.) of different approaches.

Ours
(32 spp)

Ours
(64 spp)

PSDR-VOL
(32 spp)

PRB
(32 spp)

1.40 2.80 2.28 4.07

6. Discussion

Comparison to boundary integral methods By implicitly ac-
counting for boundary effects, our approach eliminates the need
for explicit sampling of discontinuity boundaries required in other
methods [ZMY∗20, ZYZ21]. Our method computes the finite dif-
ference of each offset sample independently, allowing those near
boundaries to naturally exhibit values greater in magnitude.

Comparison to finite differences Our approach to differentiat-
ing importance sampling involves using offset samples for gradi-
ent computation, similar to the finite difference method. However,
unlike naïve finite differences, which require multiple sampling
passes and introduce noise due to uncorrelated samples, our method
shares samples between offset evaluations. This reduces computa-
tional cost and yields more stable gradients.
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Figure 8: Comparison of shape-adaptive inverse rendering with PSDR-VOL [ZYZ21]. While the forward model of PSDR-VOL generates
more physically accurate renderings, our results indicate that (c, e) the shape-adaptive BSSRDF achieves more accurate reconstructions of
the extinction coefficient σt when evaluated at equivalent samples per pixel (spp). Notably, (e) the shape-adaptive BSSRDF demonstrates
convergence at a low spp (32 spp), whereas (d) PSDR-VOL fails to converge even when utilizing a higher number of samples (128 spp).
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Figure 9: Comparison of shape-adaptive inverse rendering with
PRB [VSJ21]. We jointly optimize σt and α using our method and
PRB at 32 spp. Despite our method employing an approximate for-
ward model, our method converges in fewer iterations. The plots
show that our model converges in less than 80 iterations, nearly six
times faster than PRB, which requires more than 200 iterations.

7. Conclusion

In this paper, we presented a practical inverse rendering method for
3D objects with homogeneous subsurface scattering materials by
developing a differentiable shape-adaptive BSSRDF model. Our
analysis identified two primary challenges in differentiating the
shape-adaptive importance sampling framework: (1) difficulty of
computing derivatives involving the importance sampling operation
and (2) the stochastic behavior of the absorption probability. We
addressed the first issues by developing a robust finite difference-

based approach using correlated offset samples for extinction coef-
ficient σt . The second issue is handled by reformulating the effect
of absorption in the rendering process from Russian Roulette path
termination to a differentiable scale factor, facilitating naïve auto-
matic differentiation for scattering albedo α. By combining finite
differences (σt ) with automatic differentiation (α), our approach
achieves reliable reconstruction, even with a relatively small num-
ber of samples.

Limitations & Future work Our method is well-suited for sim-
ple problem settings where the optimized parameters are low-
dimensional. Extending the finite difference-based approach to
more general settings, which involve more complex light paths or a
larger set of optimized parameters, provides a promising direction
for future research. For instance, we anticipate that heterogeneity
can be approximated by textured spatial variation without increas-
ing the complexity of the finite difference method. Extending the
finite difference-based approach to a general importance sampling
framework or exploring a different sampling model architecture
(e.g., Normalizing Flows) would be an another interesting future
research direction.
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